
Open Source Astrocomputing

Matthew Turk (UCSD)
and the Enzo and yt collaborations

sites.google.com/site/matthewturk

“Future of Astrocomputing”

I wanted to present today about what I think, as a relatively new researcher, the future of
Astrocomputing is going to be characterized by. Not highly scalable problems, not a
rethinking of parallelism, not GPUs or databases or PGAS languages, but rather a sociological
issue.

Reproducibility
& Collaboration

The future of astrocomputing absolutely must be focused on the generation of sustainable
mechanisms for reproducibility of results and collaboration between research groups. This will never
be a completed goal; the idea of consolidation of astrophysical simulation codes is anathema to
verification and validation of results. However, the means for participation for new researchers, for
verification and validation, and for the broadening of participation in astrophysical computation will
require a consistent focus on encouraging reproducibility and collaboration.

Open Source

And, to put it simply, the only feasible way to encourage reproducibility and collaboration is through
the application of Open Source philosophy. (As a side note, in general I have a personal resistance to
the usage of “Open Source” over the terminology “Free Software” -- however, for the purposes of this
talk, I will concede the territory and utilize those words.)

The application of Open Source principles to astrophysical computation is more than just tossing up a
tarball on a website and setting up a mailing list. It requires a rethinking of the mechanism for
outreach and engagement of a community.

To that end, I would like to discuss two case studies: that of Enzo, an astrophysical simulation code,
and that of yt, a code designed for the analysis and visualization of astrophysical data. However,
before doing so, I would like to that the time to identify three common objections that I have heard
raised about open source computing in scientific fields of study.

1.
Does Open Source

remove my edge on the
competition?

The first of these three objections is that of the competitive advantage. Does making available the
ability to run simulations, particularly new and exciting types of simulations, prevent you from being
competitive academically? Will other people -- the imagined vast, ravenous hordes of people watching
every commit on a source code repository -- simply steal out your methods and code, and use it to
their own advantage?

2.
What about issues of

correctness?

The second speaks to an insecurity, one that I have heard expressed quite often, and one that I too
have thought on occasion. Does providing the means of verification and validation of a piece of
simulation code provide also the ammunition for others to discredit a model, publish a paper
lambasting your work, or even simply identify flaws and marginalize your work.

3.
Do support structures

encumber productivity?

And finally, “What about all the emails?” Does providing an open source code give license to everyone
who downloads it to pester you endlessly? And, more specifically -- if the type of Open Source
Methodology that you use is truly a mechanism for community engagement, rather than source code
distribution, won’t it become unbearable to shepherd external users?

Lone Coder

Shared Source

Closed Collaboration

Open Source

Most open source scientific codes follow a standard trajectory: a single person working in
isolation, who ends up sharing the source with some close collaborators, and then perhaps
an ultimate open sourcing of the code to the public.

Lone Coder

Shared Source

Closed Collaboration

Open Source

Most open source scientific codes follow a standard trajectory: a single person working in
isolation, who ends up sharing the source with some close collaborators, and then perhaps
an ultimate open sourcing of the code to the public.

Lone Coder

Shared Source

Closed Collaboration

Open Source

I’ll discuss the process by which Enzo moved to Open Source, and how it has benefited from
that process.

enzo

I’d like to first star by discussing the case study of Enzo. Enzo is an astrophysical simulation
code, originally written by Greg Bryan, which has been stewarded by Mike Norman at the LCA
for many years. Mike is a pioneer in developing open source codes, and without him the
Enzo community would not be what it is today. But rather than starting with a discussion of
where the Enzo code is today, I’d like to step back and take a look at how it got to be what it
is.

When I was at Penn State in 2003, working with Tom Abel, I was handed a tarball called
enzo.tar.gz.

That tarball was enormous. By that time, while Enzo was not yet publicly available, the
manual was online, the cookbook was online, and the support structures for asking questions
were in place -- thanks to Mike Norman, Greg Bryan, and Brian O’Shea.

But even so, I was not only new to Enzo, I was new to graduate school and new to simulations
on the whole. I was good with computers, so that was in my favor, but it was still a large
undertaking. Without the infrastructure that had been built around it, it would have been
hopeless.

Back in the day, the manual consisted of a website.

That’s still true today! It’s gotten a facelift, and a bunch of added content, but it’s still a
website that has information, pointers to other resources, and a guide to the source code.

A History of Enzo

Enzo, like many different codes, followed a standard track of development. The initial
version was written by a lone coder: unlike, say, the FLASH code or CASTRO, Enzo was
originally written by Greg Bryan by himself. This seems to be the rule more than the
exception in astrophysical codes. At some point, Greg shared the code with others in his
research group and his other collaborators, and then this became a closed collaboration.
This code was then open sourced and made freely available to the public.

However, even though that’s the main riverbed, there were several forks and tributaries that
complicate the story.

The open source branch of Enzo was primarily characterized by two classes of individuals:
those with repository access, and those without. While changes often flowed downstream
from the developers, it was much rarer for there to be crosstalk downstream or, in particular,
sharing of changes back with the primary developers. While bugfixes would occasionally
make their way back up, major physics modules never did. In the closed collaboration,
however, code sharing was common: even though the source control practices did not really
lend themselves to this (it was usually a bunch of tarballs being passed around!) routines and
physics modules were shared, and a great deal of crosstalk occurred.

Lone Coder

A History of Enzo

Enzo, like many different codes, followed a standard track of development. The initial
version was written by a lone coder: unlike, say, the FLASH code or CASTRO, Enzo was
originally written by Greg Bryan by himself. This seems to be the rule more than the
exception in astrophysical codes. At some point, Greg shared the code with others in his
research group and his other collaborators, and then this became a closed collaboration.
This code was then open sourced and made freely available to the public.

However, even though that’s the main riverbed, there were several forks and tributaries that
complicate the story.

The open source branch of Enzo was primarily characterized by two classes of individuals:
those with repository access, and those without. While changes often flowed downstream
from the developers, it was much rarer for there to be crosstalk downstream or, in particular,
sharing of changes back with the primary developers. While bugfixes would occasionally
make their way back up, major physics modules never did. In the closed collaboration,
however, code sharing was common: even though the source control practices did not really
lend themselves to this (it was usually a bunch of tarballs being passed around!) routines and
physics modules were shared, and a great deal of crosstalk occurred.

Lone Coder Shared
Source

A History of Enzo

Enzo, like many different codes, followed a standard track of development. The initial
version was written by a lone coder: unlike, say, the FLASH code or CASTRO, Enzo was
originally written by Greg Bryan by himself. This seems to be the rule more than the
exception in astrophysical codes. At some point, Greg shared the code with others in his
research group and his other collaborators, and then this became a closed collaboration.
This code was then open sourced and made freely available to the public.

However, even though that’s the main riverbed, there were several forks and tributaries that
complicate the story.

The open source branch of Enzo was primarily characterized by two classes of individuals:
those with repository access, and those without. While changes often flowed downstream
from the developers, it was much rarer for there to be crosstalk downstream or, in particular,
sharing of changes back with the primary developers. While bugfixes would occasionally
make their way back up, major physics modules never did. In the closed collaboration,
however, code sharing was common: even though the source control practices did not really
lend themselves to this (it was usually a bunch of tarballs being passed around!) routines and
physics modules were shared, and a great deal of crosstalk occurred.

Lone Coder Shared
Source

Open Source

A History of Enzo

Enzo, like many different codes, followed a standard track of development. The initial
version was written by a lone coder: unlike, say, the FLASH code or CASTRO, Enzo was
originally written by Greg Bryan by himself. This seems to be the rule more than the
exception in astrophysical codes. At some point, Greg shared the code with others in his
research group and his other collaborators, and then this became a closed collaboration.
This code was then open sourced and made freely available to the public.

However, even though that’s the main riverbed, there were several forks and tributaries that
complicate the story.

The open source branch of Enzo was primarily characterized by two classes of individuals:
those with repository access, and those without. While changes often flowed downstream
from the developers, it was much rarer for there to be crosstalk downstream or, in particular,
sharing of changes back with the primary developers. While bugfixes would occasionally
make their way back up, major physics modules never did. In the closed collaboration,
however, code sharing was common: even though the source control practices did not really
lend themselves to this (it was usually a bunch of tarballs being passed around!) routines and
physics modules were shared, and a great deal of crosstalk occurred.

Lone Coder Shared
Source

Open Source

Closed
Collaboration

A History of Enzo

Enzo, like many different codes, followed a standard track of development. The initial
version was written by a lone coder: unlike, say, the FLASH code or CASTRO, Enzo was
originally written by Greg Bryan by himself. This seems to be the rule more than the
exception in astrophysical codes. At some point, Greg shared the code with others in his
research group and his other collaborators, and then this became a closed collaboration.
This code was then open sourced and made freely available to the public.

However, even though that’s the main riverbed, there were several forks and tributaries that
complicate the story.

The open source branch of Enzo was primarily characterized by two classes of individuals:
those with repository access, and those without. While changes often flowed downstream
from the developers, it was much rarer for there to be crosstalk downstream or, in particular,
sharing of changes back with the primary developers. While bugfixes would occasionally
make their way back up, major physics modules never did. In the closed collaboration,
however, code sharing was common: even though the source control practices did not really
lend themselves to this (it was usually a bunch of tarballs being passed around!) routines and
physics modules were shared, and a great deal of crosstalk occurred.

Lone Coder Shared
Source

Open Source

Closed
Collaboration

A History of Enzo

Enzo, like many different codes, followed a standard track of development. The initial
version was written by a lone coder: unlike, say, the FLASH code or CASTRO, Enzo was
originally written by Greg Bryan by himself. This seems to be the rule more than the
exception in astrophysical codes. At some point, Greg shared the code with others in his
research group and his other collaborators, and then this became a closed collaboration.
This code was then open sourced and made freely available to the public.

However, even though that’s the main riverbed, there were several forks and tributaries that
complicate the story.

The open source branch of Enzo was primarily characterized by two classes of individuals:
those with repository access, and those without. While changes often flowed downstream
from the developers, it was much rarer for there to be crosstalk downstream or, in particular,
sharing of changes back with the primary developers. While bugfixes would occasionally
make their way back up, major physics modules never did. In the closed collaboration,
however, code sharing was common: even though the source control practices did not really
lend themselves to this (it was usually a bunch of tarballs being passed around!) routines and
physics modules were shared, and a great deal of crosstalk occurred.

Lone Coder Shared
Source

Open Source

Closed
Collaboration

A History of Enzo

Enzo, like many different codes, followed a standard track of development. The initial
version was written by a lone coder: unlike, say, the FLASH code or CASTRO, Enzo was
originally written by Greg Bryan by himself. This seems to be the rule more than the
exception in astrophysical codes. At some point, Greg shared the code with others in his
research group and his other collaborators, and then this became a closed collaboration.
This code was then open sourced and made freely available to the public.

However, even though that’s the main riverbed, there were several forks and tributaries that
complicate the story.

The open source branch of Enzo was primarily characterized by two classes of individuals:
those with repository access, and those without. While changes often flowed downstream
from the developers, it was much rarer for there to be crosstalk downstream or, in particular,
sharing of changes back with the primary developers. While bugfixes would occasionally
make their way back up, major physics modules never did. In the closed collaboration,
however, code sharing was common: even though the source control practices did not really
lend themselves to this (it was usually a bunch of tarballs being passed around!) routines and
physics modules were shared, and a great deal of crosstalk occurred.

Lone Coder Shared
Source

Open Source

Closed
Collaboration

A History of Enzo

Enzo, like many different codes, followed a standard track of development. The initial
version was written by a lone coder: unlike, say, the FLASH code or CASTRO, Enzo was
originally written by Greg Bryan by himself. This seems to be the rule more than the
exception in astrophysical codes. At some point, Greg shared the code with others in his
research group and his other collaborators, and then this became a closed collaboration.
This code was then open sourced and made freely available to the public.

However, even though that’s the main riverbed, there were several forks and tributaries that
complicate the story.

The open source branch of Enzo was primarily characterized by two classes of individuals:
those with repository access, and those without. While changes often flowed downstream
from the developers, it was much rarer for there to be crosstalk downstream or, in particular,
sharing of changes back with the primary developers. While bugfixes would occasionally
make their way back up, major physics modules never did. In the closed collaboration,
however, code sharing was common: even though the source control practices did not really
lend themselves to this (it was usually a bunch of tarballs being passed around!) routines and
physics modules were shared, and a great deal of crosstalk occurred.

An odd thing happened: the “Open
Source” version of Enzo embodied

closed source practices more than the
closed source version!

What this really means is that, even though the Open Source branch of Enzo did all the heavy lifting in
terms of community and documentation, the Closed Collaboration was where the really experimental
features were getting implemented and passed around. Furthermore, the Open Source branch was
being hobbled in terms of pulling contributions back in, with a path toward making them public.

Users Developers

This led to a natural segregation between the “users” and the “developers.” The transition between the
two was difficult, and this led to fragmentation of the code base and a difficulty in collaboration.

Users Developers(Ideal Space)

But what we really want is to remove this distance: while not every user will ever be a developer, and
not every developer will be a user (but most will!) we want to increase the overlap between the two
groups.

In 2009 and 2010, the primary
development groups were re-unified.

And so in 2009 and 2010, the Enzo house was put back in order. Through conscious effort, we have
attempted to expand the ability of developers to collaborate, to discuss problems, to work together,
and to share source code. We have held two developer workshops, with at least one (and probably
two) to be held in 2011, that are open to whoever wants to attend. We have transitioned to a
distributed version control system (mercurial) and we have attempted to democratize development.

Shown here is a screenshot from the first of our developer workshops, the “week of code.” During
several bursts of intense activity, we have consolidated development into a shared repository and
made this repository accessible to everyone in the general public. Through a combination of
community outreach and technological developments, we have transformed Enzo into a massively
participatory project.

SVN hg

Repository

Users

Users &
Repos

Users &
Repos

Users &
Repos

Users &
Repos

Users &
Repos

Users &
Repos

Rather than a single centralized repository, we have moved to the model of Distributed
Version Control: many repositories, everywhere, and each changeset is a fully-unique object.
This enables crosstalk, as well as encouraging sharing of changes and local (unshared, even!)
versioning.

Users no longer have to be beatified to keep track of their own modifications to the source.

The process since then has led to an
important and unavoidable conclusion:

The conceptual separation of “users”
from “developers” in Astrocomputing is

actively harmful.

By describing astrocomputing codes in the terminology of users and developers, it creates a false
distinction between those allowed to inspect, modify, extend a code and those who are expected to
accept it unquestioningly. This stigmatizes the development of additional models, and furthermore,
impedes the sharing of modules between users.

(For greater discussion of this, see work by Jono Bacon, Karl Fogel, Ben Collins-Sussman, and so on.
The idea of “Highly Open Participation” needs to be extended to Astrocomputing.)

“Developers”

Every item on this list is part of the due diligence of using an astrophysical code.

“Developers”

Inspection and verification

Every item on this list is part of the due diligence of using an astrophysical code.

“Developers”

Inspection and verification
Tracking modifications

Every item on this list is part of the due diligence of using an astrophysical code.

“Developers”

Inspection and verification
Tracking modifications
Sharing information

Every item on this list is part of the due diligence of using an astrophysical code.

“Developers”

Inspection and verification
Tracking modifications
Sharing information
Adding functionality

Every item on this list is part of the due diligence of using an astrophysical code.

“Developers”

Inspection and verification
Tracking modifications
Sharing information
Adding functionality

All are necessary characteristics of the
scientific process as a whole.

Every item on this list is part of the due diligence of using an astrophysical code.

“Users”

Codes cannot and should not be black boxes. As simulators, we have an intuitive understanding of
what works, what doesn’t work, what the code can tell us and what it cannot. This is something we
should not take for granted, and something we should not suggest others shy away from, either. It
has been said that the easier a code is to use, the easier it can be used to do Bad Science. Accepting
this as simply the status quo will stymie scientific growth.

By creating this false barrier, biases against simulating as a mechanism for promoting understanding
will grow as well. “Development? Isn’t that the domain of the code monkey?”

“Users”

Uncritical acceptance of code...?

Codes cannot and should not be black boxes. As simulators, we have an intuitive understanding of
what works, what doesn’t work, what the code can tell us and what it cannot. This is something we
should not take for granted, and something we should not suggest others shy away from, either. It
has been said that the easier a code is to use, the easier it can be used to do Bad Science. Accepting
this as simply the status quo will stymie scientific growth.

By creating this false barrier, biases against simulating as a mechanism for promoting understanding
will grow as well. “Development? Isn’t that the domain of the code monkey?”

“Users”

Uncritical acceptance of code...?

“These are people we give the code
to that don’t care how it works.”

(an actual quotation!)

Codes cannot and should not be black boxes. As simulators, we have an intuitive understanding of
what works, what doesn’t work, what the code can tell us and what it cannot. This is something we
should not take for granted, and something we should not suggest others shy away from, either. It
has been said that the easier a code is to use, the easier it can be used to do Bad Science. Accepting
this as simply the status quo will stymie scientific growth.

By creating this false barrier, biases against simulating as a mechanism for promoting understanding
will grow as well. “Development? Isn’t that the domain of the code monkey?”

Enzo is a public code.

enzo.googlecode.com

(for source code, documentation, recipes,
mailing lists, wiki and hours of video tutorials)

The entire Enzo community is accessible from this website: not just the source code, but tutorials,
documentation, examples, mailing lists, and so on and so forth.

Nearly all of Enzo has been
written by working scientists.

This is an important point, and one that should be emphasized. The development of Enzo has been
driven by the pragmatic needs of working scientists. This development has accelerated since the
highly-participatory shift in its development. This includes things like ray tracing, chemistry,
parallelism improvements, utilization of accelerators, threading, inline analysis, magnetic fields,
streaming IO, star particle enhancements, cooling models, and on and on.

260,000 lines of code
C, C++, Fortran and (a little) CUDA

>30 contributors
Contributors from 15 institutions

8AM 6PM

Enzo is still mostly an 8-6 code, but there are commits at every time of day. It has nearly doubled in
size over the last eighteen months.

We hope to engage more members of the community to contribute changes, fixes, and so on. With
this new found energy, we also intend to go along routes that I think no one saw before: this Spring we
will begin the push to Enzo 3.0, where the accumulated technical debt of the last 15 years will be
addressed.

yt
astro-ph/1011.3514
yt.enzotools.org

Now I’m going to transition to talking more about a project I’m the lead developer on, yt. I
started yt at Stanford with my advisor Tom Abel, when he and John Wise and I were sitting
around talking to the lead developer of a visualization package called HippoDraw. It started
out as a slicer and a phase plot creator, and now it’s moved into being a parallel analysis and
visualization package that can handle many different tasks.

How do we analyze?

But before we speak much more about what yt does and how it’s developed, I want to take a
moment to ask you: what is the *right* way to analyze astrophysical data?

I’ve chosen this image, of a galaxy cluster simulation, to demonstrate the fundamental
disconnect in astrophysical simulations. As astronomers, our primary concern is with
galaxies, and stars, and clusters. But as simulators, we’re stuck looking at particles, grids,
cells, and so on. Here you could see both of these aspects -- and while they are in some
sense related, a grid is a poor substitute for a galaxy.

yt has been designed to
address physical, not

computational, entities.

The entire focus of yt has been on abstracting out the simulational aspects wherever possible. This
means that rather than loading up AMR grids and analyzing them, you load up the simulation and then
address halos, or spheres, or disks -- and then yt handles selecting the data, performing operations
on it, and so on. This enables a new workflow to be designed that focuses on the underlying physics
of the calculation.

For instance, the process of selecting halos, calculating their angular momentum and looking at phase
plots of their entropy can be done in only a handful of lines, none of which have any knowledge about
the underlying simulation data format. Despite that, yt still makes accessible the underlying
simulation objects, but they are not *required* to analyze data.

Enzo, Orion, CASTRO, FLASH

Chombo, Tiger, ART, RAMSES

(...and more to come?)

yt’s design is also neutral to the underlying code. We currently support Enzo, Orion, CASTRO and
FLASH nearly fully, with somewhat limited support for Chombo, Tiger, ART and RAMSES. We hope to
continue this trend by extending to additional codes, but also to continue to improve support for the
existing codes. We can only do this in the context of a desire from external users, however.

The generalization effort was started by Jeff Oishi, but it has benefited from help from Oliver Hahn,
Stella Offner, John ZuHone, and Chris Moody, along with several others.

yt has many, many features. I’m not going to list them here, but they are in the paper, and I
encourage you to investigate. We’re targeting Blue Waters for in situ and post processing of data.

(Kim, Wise, Alvarez and Abel)
One of the simplest sets of tasks is to visualize 2D representations of datasets -- these can be line
integrals (projections), slices, and even oblique slices. This image, provided by Ji-hoon Kim, shows a
galaxy formation simulation wherein halos have been overplotted, using the HOP halo finder, provided
by yt. yt also provides friend-of-friend and a completely ground-up parallel version of HOP, created
and implemented by Stephen Skory.

(Turk, Norman and Abel 2010)
This is a slide from my own research. yt provides the ability to select data and then plot
various components. On this slide are a number of interesting applications of the data
manipulation capabilities of yt -- specifically, we see multi-variate plots of a Population III
star forming region. The upper left is a standard mass distribution as a function of density
and temperature. In the top middle, I’ve replotted it so that you can see the mass
distribution as a function of temperature and declination; all of the hot gas is confined to the
polar regions, as you can see. The upper right is the average molecular hydrogen fraction.
On the bottom are plots of the entropy, the inward velocity, and an image plot of the
molecular hydrogen fraction along the y axis.

As you can see, not only can we do visualizations of the data with yt, but also interesting
quantitative visualizations in non-spatial variables.

(Turk, Abel and O’Shea 2009)
One of the things I’m most proud of is the volume rendering capabilities of yt, which can be
motivated by physical characteristics in the simulation. I used yt to visualize this primordial
star forming region, which we showed in a 2009 paper was able to fragment and form two
Population III stars. I’m particularly proud of this visualization: I set the camera to point
down the angular momentum system of the two clumps, selected isocontours that drew out
chemical instabilities, and then included in the upper left a phase plot showing the different
kinks in the equation of state of the gas.

(Wise et al)
This is a reionization simulation by John Wise, which features 10^6 Msun dark matter
resolution in a 12.5 Mpc/h (comoving) box. This image was generated at z=8.5, and it uses
both Planck-spectrum emission and approximate scattering to visualize what this region may
look like. The yt volume renderer solves the (non-scattering) radiation transfer equation, and
so we are able to mock up simple simulated observations with it.

(Wise et al)
This is another image from John Wise, of a set of dwarf galaxies at z=17. Each cloud is about
10^7 Msun. The simulation includes radiation feedback from PopIII stars and their remnant
black holes.

By making the ability to volume render beautiful, narrative images available to working scientists, the
yt project is explicitly attempting to improve access to outreach-quality visualization. We hope to
pursue outreach visualization as well as scientific visualization, and we would like to explore
collaborations with Planetaria and outreach coordinators. yt visualizations have won DOE awards, and
several have been featured at the Adler planetarium.

(Hummels and Bryan)
Of course, while volume rendering can be used to create pretty pictures, it can also be used
to construct quantitative analysis. I’ve used it in my own work to calculate 2D Toomre Q
parameters, but here we see an image by Cameron Hummels of a galactic disk in one of his
simulations. To visualize the formation of galaxies, Cameron uses the yt halo finder to
identify halos, calculate their angular momentum, and then align the volume rendering
camera along that angular momentum vector. He then calculates the line integral at every
pixel in an image, which returns a column density at oblique angles.

71,000 lines of code
Python, Cython, C

12 contributors (60+ users)
Contributors from 7 institutions

8AM 6PM

yt, like enzo, is a mostly workday project. We’re still growing, and there are a number of places it
could be improved or extended, but it’s an energized community.

yt is open source, but unlike Enzo
it has not reached a critical mass.

We’re trying to engage the public, but there are a number of factors that seem to stymie collaboration
on this type of project. I think that what it comes down to ...

Enzo is like a car.

...is that Enzo is like a car. You assemble it, you drive it, and you tinker with it...

yt is like a toolbox.

... but yt is a tool that’s taken as given. If it works for you, you use it, and you’d prefer not to think
about it. Developing a new feature in yt does not necessarily lead to a new publication. And that’s
okay! And another issue is that we have a long way to go for making accessible easy participation of
small things, like analysis scripts and field definitions.

...we’re working to enable greater participation.

We hope that in the future we’ll be able to provide a bitbucket-like interface, enabling simple
contributions and simple repositories for people to share minor modifications. Unlike Enzo, where
often physics modules have to touch the code in a number of places, yt has a substantial number of
possible enhancements that could be very self-contained. Not only that, but the reproducibility of
papers will be greatly enhanced by having a location to store analysis scripts. We hope to bring this
online in early 2011.

1.
Does Open Source

remove my edge on the
competition?

1.
If anything, Open

Source increases global
competitiveness.

By expanding the community, and treating it as a community of developers, then the entire
conversation changes. It’s no longer “What am I giving away” but rather, “What is being shared?”
Simply giving away code is the wrong solution to the problem of open source: the correct solution is to
construct a community of users and developers, and to shepherd that community toward a
participatory atmosphere.

2.
What about issues of

correctness?

2.
Science is incremental.

Accuracy is double-
edged.

Science is an incremental process. We build not only on the work of past researchers, but also their
misunderstandings and mistakes. Without an inspectable piece of simulation code, a set of results
should be viewed as unreproducible. Not only should inspectable code be required for reproducibility,
but for verifiability of the results. Inaccurate results that are never corrected will do more harm than
good, as time continues. Algorithms are not enough: implementations are necessary.

For more on this, see the works of Cameron Neylon, Titus Brown, Randall J. LeVeque, and so on.

3.
Do support structures

encumber productivity?

3.
No.

By developing a community of developers and users, the burden is spread around. People become
more interested in helping, in contributing, and answering questions. Helping others is analogous to
training the next generation of collaborators and researchers.

Next-generation Astrophysical simulation codes
will require collaborative development, and the
Open Source methodology is the best way to

foster that development.

In past years, it was common for graduate students or individual researchers to be intimately familiar
with -- or even the sole author of! -- astrophysical simulation codes. Modern challenges presented by
multiphysics simulations on complex computing platforms, however, will require a collaborative
methodology. A single point of failure is no longer acceptable, nor even attainable.

Next-generation Astrophysical simulation codes
will require collaborative development, and the
Open Source methodology is the best way to

foster that development.

The only way to create sustainable mechanism for development is through open source
methodologies. This is more than simply putting up tarballs, or distributing source code. It will
require collaboration, community development, education, and a willingness to participate. For a
relatively small, highly-competitive field like computational astrophysics, this may be a challenge. But
it is necessary.

A final thought: who is the “we” in the room?

It’s very common to hear the construction, “If we are to get to exascale...” “If we want to use an
exascale machine...” “If we don’t utilize many cores ...” and so on. It’s still not clear to me who this
refers to. Is there, in fact, an Astrophysics Simulation community? Or is it really a collection of
fiefdoms? And is that a status quo “we” can live with?

Thank you.
enzo.googlecode.com

Tom Abel
James Bordner

Greg Bryan
David Collins

Robert Harkness
Elizabeth Harper-Clark

Cameron Hummels
Ji-hoon Kim

Alexei Kritsuk
Michael Kuhlen

Michael Norman
Brian O'Shea

Jeff Oishi
Dan Reynolds

Christine Simpson
Sam Skillman

Stephen Skory
Britton Smith

Geoffrey So
Elizabeth Tasker

Matthew Turk
Rick Wagner

Peng Wang
John Wise
Fen Zhao

Tom Abel
David Collins
Oliver Hahn
Cameron Hummels
Ji-hoon Kim
Christopher Moody
Michael Norman
Brian O'Shea
Stella Offner
Jeff Oishi
Devin Silvia
Sam Skillman
Stephen Skory
Britton Smith
Matthew Turk
John Wise
John ZuHone

yt.enzotools.org

This is an incomplete listing of the people who have contributed or encouraged development
on either of these projects. We have also enjoyed the support of a number of funding
agencies, including the Department of Energy, the National Science Foundation, and the
University of California HIPACC.

